[HTML][HTML] Boosting anti-PD-1 therapy with metformin-loaded macrophage-derived microparticles

Z Wei, X Zhang, T Yong, N Bie, G Zhan, X Li… - Nature …, 2021 - nature.com
Z Wei, X Zhang, T Yong, N Bie, G Zhan, X Li, Q Liang, J Li, J Yu, G Huang, Y Yan, Z Zhang…
Nature Communications, 2021nature.com
The main challenges for programmed cell death 1 (PD-1)/PD-1 ligand (PD-L1) checkpoint
blockade lie in a lack of sufficient T cell infiltration, tumor immunosuppressive
microenvironment, and the inadequate tumor accumulation and penetration of anti-PD-1/PD-
L1 antibody. Resetting tumor-associated macrophages (TAMs) is a promising strategy to
enhance T-cell antitumor immunity and ameliorate tumor immunosuppression. Here,
mannose-modified macrophage-derived microparticles (Man-MPs) loading metformin …
Abstract
The main challenges for programmed cell death 1(PD-1)/PD-1 ligand (PD-L1) checkpoint blockade lie in a lack of sufficient T cell infiltration, tumor immunosuppressive microenvironment, and the inadequate tumor accumulation and penetration of anti-PD-1/PD-L1 antibody. Resetting tumor-associated macrophages (TAMs) is a promising strategy to enhance T-cell antitumor immunity and ameliorate tumor immunosuppression. Here, mannose-modified macrophage-derived microparticles (Man-MPs) loading metformin (Met@Man-MPs) are developed to efficiently target to M2-like TAMs to repolarize into M1-like phenotype. Met@Man-MPs-reset TAMs remodel the tumor immune microenvironment by increasing the recruitment of CD8+ T cells into tumor tissues and decreasing immunosuppressive infiltration of myeloid-derived suppressor cells and regulatory T cells. More importantly, the collagen-degrading capacity of Man-MPs contributes to the infiltration of CD8+ T cells into tumor interiors and enhances tumor accumulation and penetration of anti-PD-1 antibody. These unique features of Met@Man-MPs contribute to boost anti-PD-1 antibody therapy, improving anticancer efficacy and long-term memory immunity after combination treatment. Our results support Met@Man-MPs as a potential drug to improve tumor resistance to anti-PD-1 therapy.
nature.com